Large contributions of coupled protonation equilibria to the observed enthalpy and heat capacity changes for ssDNA binding to Escherichia coli SSB protein.
نویسندگان
چکیده
Many macromolecular interactions, including protein-nucleic acid interactions, are accompanied by a substantial negative heat capacity change, the molecular origins of which have generated substantial interest. We have shown previously that temperature-dependent unstacking of the bases within oligo(dA) upon binding to the Escherichia coli SSB tetramer dominates the binding enthalpy, DeltaH(obs), and accounts for as much as a half of the observed heat capacity change, DeltaC(p). However, there is still a substantial DeltaC(p) associated with SSB binding to ssDNA, such as oligo(dT), that does not undergo substantial base stacking. In an attempt to determine the origins of this heat capacity change, we have examined by isothermal titration calorimetry (ITC) the equilibrium binding of dT(pT)(34) to SSB over a broad pH range (pH 5. 0-10.0) at 0.02 M, 0.2 M NaCl and 1 M NaCl (25 degrees C), and as a function of temperature at pH 8.1. A net protonation of the SSB protein occurs upon dT(pT)(34) binding over this entire pH range, with contributions from at least three sets of protonation sites (pK(a1) = 5.9-6.6, pK(a2) = 8.2-8.4, and pK(a3) = 10.2-10.3) and these protonation equilibria contribute substantially to the observed DeltaH and DeltaC(p) for the SSB-dT(pT)(34) interaction. The contribution of this coupled protonation ( approximately -260 to -320 cal mol(-1) K(-1)) accounts for as much as half of the total DeltaC(p). The values of the "intrinsic" DeltaC(p,0) range from -210 +/- 33 cal mol(-1) degrees K(-1) to -237 +/- 36 cal mol(-1)K(-1), independent of [NaCl]. These results indicate that the coupling of a temperature-dependent protonation equilibria to a macromolecular interaction can result in a large negative DeltaC(p), and this finding needs to be considered in interpretations of the molecular origins of heat capacity changes associated with ligand-macromolecular interactions, as well as protein folding.
منابع مشابه
Effects of monovalent anions on a temperature-dependent heat capacity change for Escherichia coli SSB tetramer binding to single-stranded DNA.
We have previously shown that the linkage of temperature-dependent protonation and DNA base unstacking equilibria contribute significantly to both the negative enthalpy change (DeltaH(obs)) and the negative heat capacity change (DeltaC(p,obs)) for Escherichia coli SSB homotetramer binding to single-stranded (ss) DNA. Using isothermal titration calorimetry we have now examined DeltaH(obs) over a...
متن کاملAdenine base unstacking dominates the observed enthalpy and heat capacity changes for the Escherichia coli SSB tetramer binding to single-stranded oligoadenylates.
Isothermal titration calorimetry (ITC) was used to test the hypothesis that the relatively small enthalpy change (DeltaHobs) and large negative heat capacity change (DeltaCp,obs) observed for the binding of the Escherichia coli SSB protein to single-stranded (ss) oligodeoxyadenylates result from the temperature-dependent adenine base unstacking equilibrium that is thermodynamically coupled to b...
متن کاملThermodynamics of assembly of Escherichia coli aspartate transcarbamoylase.
Reaction microcalorimetry and potentiometry have been used to define the thermodynamics of assembly of Escherichia coli aspartate transcarbamoylase (aspartate carbamoyltransferase, carbamoylphosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) from its catalytic and regulatory subunits and the linkage between assembly and proton binding. Over the pH range 7-9.5 and the temperature range 15-30...
متن کاملCalorimetric studies of E. coli SSB protein-single-stranded DNA interactions. Effects of monovalent salts on binding enthalpy.
Isothermal titration calorimetry (ITC) was used to examine the effects of monovalent salts (NaCl, NaBr, NaF and ChCl) on the binding enthalpy (DeltaHobs) for E. coli SSB tetramer binding to the single-stranded oligodeoxythymidylates, dT(pT)69 and dT(pT)34 over a wide range of salt concentrations from 10 mM to 2.0 M (25 degrees C, pH 8.1), and when possible, the binding free energy and entropy (...
متن کاملThe C terminus of the Escherichia coli RecA protein modulates the DNA binding competition with single-stranded DNA-binding protein.
The nucleation step of Escherichia coli RecA filament formation on single-stranded DNA (ssDNA) is strongly inhibited by prebound E. coli ssDNA-binding protein (SSB). The capacity of RecA protein to displace SSB is dramatically enhanced in RecA proteins with C-terminal deletions. The displacement of SSB by RecA protein is progressively improved when 6, 13, and 17 C-terminal amino acids are remov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره Suppl 4 شماره
صفحات -
تاریخ انتشار 2000